Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters










Publication year range
1.
J Hazard Mater ; 470: 134151, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38554517

ABSTRACT

Ground-level ozone ranks sixth among common air pollutants. It worsens lung diseases like asthma, emphysema, and chronic bronchitis. Despite recent attention from researchers, the link between exhaled breath and ozone-induced injury remains poorly understood. This study aimed to identify novel exhaled biomarkers in ozone-exposed mice using ultra-sensitive photoinduced associative ionization time-of-flight mass spectrometry and machine learning. Distinct ion peaks for acetonitrile (m/z 42, 60, and 78), butyronitrile (m/z 70, 88, and 106), and hydrogen sulfide (m/z 35) were detected. Integration of tissue characteristics, oxidative stress-related mRNA expression, and exhaled breath condensate free-radical analysis enabled a comprehensive exploration of the relationship between ozone-induced biological responses and potential biomarkers. Under similar exposure levels, C57BL/6 mice exhibited pulmonary injury characterized by significant inflammation, oxidative stress, and cardiac damage. Notably, C57BL/6 mice showed free radical signals, indicating a distinct susceptibility profile. Immunodeficient non-obese diabetic Prkdc-/-/Il2rg-/- (NPI) mice exhibited minimal biological responses to pulmonary injury, with little impact on the heart. These findings suggest a divergence in ozone-induced damage pathways in the two mouse types, leading to alterations in exhaled biomarkers. Integrating biomarker discovery with comprehensive biopathological analysis forms a robust foundation for targeted interventions to manage health risks posed by ozone exposure.


Subject(s)
Biomarkers , Breath Tests , Machine Learning , Mice, Inbred C57BL , Ozone , Animals , Ozone/toxicity , Biomarkers/metabolism , Biomarkers/analysis , Male , Oxidative Stress/drug effects , Air Pollutants/toxicity , Air Pollutants/analysis , Mice , Mass Spectrometry , Exhalation , Lung Injury/chemically induced , Lung Injury/metabolism
3.
Anal Chem ; 95(45): 16531-16538, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37747740

ABSTRACT

Various vacuum ultraviolet (VUV) lamps are simple and convenient VUV light sources for mass spectrometry and other research fields. However, the strong absorption of high-energy photons by window materials limits the application of an extreme ultraviolet (EUV) light. In this study, a novel high-flux EUV light source is developed using a microchannel plate (MCP) window to transmit 73.6 nm (16.9 eV) EUV light generated via the radio frequency (RF) inductive discharge of neon. The MCP used is a 0.5 mm thick glass plate with a regular array of microtubes (12 µm i.d.). The photon fluxes of the EUV light source with the MCP window (12 mm i.d.) and an aperture (1.8 mm i.d.) are ∼1.31 × 1014 and ∼9.80 × 1012 photons s-1, respectively, while their corresponding leakage flow rates of the discharge gas are 0.062 and 0.046 cm3 atom s-1, according to the contrast experiments. The transmission efficiency of the MCP to the EUV light is 30.2%, with a 1.2% deviation. An EUV photoionization time-of-flight mass spectrometer (EUV-PI-TOFMS) is built to validate the practicality of the MCP-windowed EUV light source further. The detection sensitivities in 30 s measurements for methyl chloride (CH3Cl), methylene chloride (CH2Cl2), trichloromethane (CHCl3), and carbon tetrachloride (CCl4) in synthetic air are 4366, 4120, 5854, and 4095 counts ppbv-1, respectively. The corresponding 3σ limits of detection (LODs) are 42, 34, 24, and 15 pptv. This study develops a new feasible method for efficiently utilizing high-energy EUV light, with many application prospects in scientific research.

4.
Sci Total Environ ; 898: 166353, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37597565

ABSTRACT

The secondary organic aerosol (SOA) yield of toluene photooxidation was reported to substantially higher than that of trimethylbenzene due to the effect of the number of methyl substituents. However, the intrinsic mechanism for this disparity is not clear enough. In this study, a highly-sensitive thermal-desorption photoinduced associative ionization mass spectrometer (TD-PAI-MS) was used to real-time characterize the molecular composition and its evolution of the SOA generated from the photooxidation of toluene and 1,2,3-trimethylbenzene (1,2,3-TMB) in a smog chamber. In the new particle formation (NPF) stage, toluene generated more variety of nucleation precursors, such as benzaldehyde (MW 106) and benzoic acid (MW 122), resulting in a much higher nucleation rate and SOA number concentration. In the SOA growth/aging stage, the key SOA components of toluene were mainly dialdehydes, e.g., 2-oxopropanedial (MW 86) and 4-oxopent-2-enedial (MW 112), which played an important role in the formation of highly oxidized species (HOS) through oligomerization or cyclization reactions. In contrast, due to the presence of more methyl groups, 1,2,3-TMB was inclined to produce ketones, e.g., 2,3-butanedione (MW 86) and 3-methyl-4-oxopent-2-enal (MW 112), which would be cleaved into high-volatility low molecular compounds, e.g., acetic acid, through fragmentation. Taken together, relative to 1,2,3-TMB, the higher nucleation rate during NPF and the significant oligomerization/functionalization process during SOA growth are thought to be the major reasons resulting in the higher SOA yield of toluene. This work provides a reference for the insight into the different SOA yields of monocyclic aromatic hydrocarbons (MAHs) through further revealing the SOA formation mechanism during toluene and 1,2,3-TMB photooxidation.

5.
Environ Sci Pollut Res Int ; 30(41): 93617-93628, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37516703

ABSTRACT

Volatile organic compounds (VOCs) released along with soil disturbance during the remediation of abandoned industrial sites have attracted great attention due to their possible toxicity and odour. However, the real-time emission characteristics of these VOCs and their subsequent effects on health and olfaction are less understood. In this study, the gaseous VOCs released from soil disturbance by excavators and drilling rigs at an abandoned chemical pesticide plant were monitored online with a laboratory-built single photoionization time-of-flight mass spectrometer (SPI-TOFMS). Twelve main VOCs with total mean concentrations ranging from 2350 to 3410 µg m-3 were observed, with dichloromethane (DCM) having a significant contribution. The total concentrations of the remaining 11 VOCs increased substantially during soil disturbance, with the total mean concentrations increasing from 18.65-39.05 to 37.95-297.94 µg m-3 and those of peak concentrations increasing from 28.46-58.97 to 88.38-839.13 µg m-3. This increase in VOC concentrations during soil disturbance leads to an enhanced heath risk for on-site workers. The distinctive difference between the mean and peak concentrations of VOCs indicates the importance of using mean and peak concentrations, respectively, for risk and olfactory evaluation due to the rapid response of the human nose to odours. As a result, the cumulative noncarcinogenic risk at the relatively high pollutant plot was higher than the occupational safety limit, while the total carcinogenic risks at all monitored scenarios exceeded the acceptable limit. Among the VOCs investigated, DCM and trichloroethylene (TCE) were determined to be crucial pollutants for both noncarcinogenic and carcinogenic risks of VOCs. With regard to olfactory effects, organic sulphides, including dimethyl disulphide (DMDS), dimethyl sulphide (DMS), and dimethyl trisulphide (DMTS) were identified as dominant odour contributors (78.28-92.11%) during soil disturbance.


Subject(s)
Air Pollutants , Pesticides , Volatile Organic Compounds , Humans , Air Pollutants/analysis , Soil , Volatile Organic Compounds/analysis , Environmental Monitoring , Smell , Risk Assessment , China
6.
Anal Chem ; 95(32): 11859-11867, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37474253

ABSTRACT

Single-photon ionization (SPI) is a unique soft ionization technique for organic analysis. A convenient high-flux vacuum ultraviolet (VUV) light source is a key precondition for wide application of SPI techniques. In this study, we present a novel VUV lamp by simply modifying an ordinary electrodeless fluorescent lamp. By replacing the glass bulb with a stainless steel bulb and introducing 5% Kr/He (v/v) as the excitation gas, an excellent VUV photon flux over 4.0 × 1014 photons s-1 was obtained. Due to its rapid glow characteristics, the VUV lamp can be switched on and off instantly as required by detection, ensuring the stability and service life of the lamp. To demonstrate the performance of the new lamp, the switchable VUV lamp was coupled with an SPI-mass spectrometer, which could be changed to photoinduced associative ionization (PAI) mode by doping gaseous CH2Cl2 to initiate an associative ionization reaction. Two types of volatile organic compounds sensitive to SPI and PAI, typically benzene series and oxygenated organics, respectively, were selected as samples. The instrument exhibited a high detection sensitivity for the tested compounds. With a measurement time of 11 s, the 3σ limits of detection ranged from 0.33 to 0.75 pptv in SPI mode and from 0.03 to 0.12 pptv in PAI mode. This study provides an extremely simple method to assemble a VUV lamp with many merits, e.g., portability, robustness, durability, low cost, and high flux. The VUV lamp may contribute to the development of SPI-related highly sensitive detection technologies.

7.
J Agric Food Chem ; 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37022303

ABSTRACT

Natural food preservatives are being sought extensively as a safe alternative to chemical food preservatives. This study aimed to identify potential natural preservatives from herbs using single-photon ionization time-of-flight mass spectrometry (SPI-TOF-MS). Five Artemisia species and four other herbs were analyzed, and the random forest (RF) algorithm was used to simulate olfaction and distinguish the Artemisia species by identifying the characteristic peaks of volatile terpenoids (VTPs). Results showed that the terpenoid synthase (TPS) gene family was expanded in Artemisia species, potentially contributing to the increased production of VTPs, which have potential as natural preservatives and specifically identify these species. The limits of detections (LODs) for principle VTPs in Artemisia species were as low as 22-39 parts-per-trillion-by-volume (pptv) using SPI-TOF-MS. This study highlights the potential for headspace mass spectrometry to be used in the development of natural preservatives and the identification of plant species.

8.
Anal Methods ; 15(3): 368-376, 2023 01 19.
Article in English | MEDLINE | ID: mdl-36597774

ABSTRACT

Photoionization mass spectrometry (PI-MS) has become a versatile tool in the real-time analysis of volatile organic compounds (VOCs) from the atmosphere or exhaled breath. However, some key species, e.g., acetonitrile, are hard to measure due to their higher ionization energies than photon energy. In this study, the direct and sensitive detection of gaseous acetonitrile based on a photoinduced associative ionization (PAI) reaction was investigated with a laboratory-built PAI time-of-flight mass spectrometer (PAI-TOFMS). By doping CH2Cl2 in the photoionization ion source, the mass signal of acetonitrile that cannot be effectively obtained by photoionization appeared with an extremely high intensity through the PAI reaction between acetonitrile, CH2Cl2, and residual H2O in the system. Though the moisture in the sample gas has an evident impact on the detection efficiency of acetonitrile, with a relative signal intensity decreasing from 100% under dry conditions to 60% at saturated relative humidity, excellent detection sensitivity was still obtained for gaseous acetonitrile in different matrixes. The sensitivity calibration experiment showed that the detection sensitivities of acetonitrile in N2 buffer gas, exhaled gas, and outdoor air were 682.4 ± 5.2, 17.0 ± 0.7, and 23.9 ± 0.2 counts pptv-1, respectively, with an analysis time of 10 s. The corresponding 3σ LODs reached 0.22, 8.82, and 6.28 pptv, which are equivalent to 0.40, 16.0, and 11.4 ng m-3. The performance of the PAI-TOFMS was first demonstrated by analyzing exhaled acetonitrile from healthy non-smokers and smokers and continuous monitoring of acetonitrile in outdoor air. In summary, this study provides a new and highly sensitive method for the real-time detection of acetonitrile through mass spectrometry.


Subject(s)
Exhalation , Volatile Organic Compounds , Mass Spectrometry/methods , Volatile Organic Compounds/analysis , Chemical Phenomena , Gases
9.
Phys Chem Chem Phys ; 24(27): 16484-16492, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35771196

ABSTRACT

A vacuum ultraviolet free electron laser (VUV-FEL) photoionization aerosol mass spectrometer (AMS) has been developed for online measurement of neutral compounds in laboratory environments. The aerosol apparatus is mainly composed of a smog chamber and a reflectron time-of-flight mass spectrometer (TOF-MS). The indoor smog chamber had a 2 m3 fluorinated ethylene propylene film reactor placed in a temperature- and humidity-controlled room, which was used to generate the aerosols. The aerosols were sampled via an inlet system consisting of a 100 µm orifice nozzle and aerodynamic lenses. The application of this VUV-FEL AMS to the α-pinene ozonolysis under different concentrations reveals two new compounds, for which the formation mechanisms are proposed. The present findings contribute to the mechanistic understanding of the α-pinene ozonolysis in the neighborhood of emission origins of α-pinene. The VUV-FEL AMS method has the potential for chemical analysis of neutral aerosol species during the new particle formation processes.

10.
Talanta ; 247: 123558, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35605514

ABSTRACT

Single-photon ionization mass spectrometry (SPI-MS) is an attractive analytical technique for the online detection of volatile organic compounds; however, the low photon flux of the vacuum ultraviolet (VUV) lamp commonly used in the SPI ion source and the corresponding low detection sensitivity remain a constraint to its wide field applications. In this study, a new VUV lamp-based SPI ion source was developed. By increasing the discharging volume and optimizing the configuration of the lens and ionizer, the photon flux of the VUV lamp and the sensitivity of the ion source were significantly improved. The VUV lamp output was 2.8 × 1015 photons s-1, which was focused into the small ionization zone, and the ion intensity of gaseous benzene under SPI achieved 1.7 × 104 counts per second per pptv (cps pptv-1). This ion source can also function in photoinduced associative ionization (PAI) mode by introducing gaseous CH2Cl2 to initiate an associative ionization reaction. Because of the high efficiency of the ion source, the amount of doped CH2Cl2 needed for PAI was greatly reduced (∼2.5% of that used in previous experiments). PAI exhibited an outstanding protonation effect on monosulfur ethers (CnH2n+1S). The signal intensities of the protonated molecular ions (MH+) were 46-128 times higher than those of the molecular ions (M+) produced by SPI. Since monosulfur ethers generally have lower SPI cross-sections than polysulfur ethers (CnH2n+1S2 or CnH2n+1S3), the PAI and SPI modes were selected for the online measurement of a series of mono- and polysulfur ethers, respectively. The obtained detection sensitivity of the mono- and polysulfur ethers reached 476.5 ± 1.72-2835.1 ± 99.5 and 47.9 ± 0.4-105.1 ± 2.3 counts pptv-1, respectively, in 10 s of sampling time. The corresponding 3σ limits of detection (LODs) were 0.12-0.71 and 0.06-0.14 pptv, respectively. This study provides advances in the development of a high-flux VUV lamp and a highly efficient SPI/PAI ion source, as well as an ultrasensitive analytical method for detecting sulfur ethers.


Subject(s)
Sulfides , Volatile Organic Compounds , Ethers , Mass Spectrometry/methods , Vacuum , Volatile Organic Compounds/analysis
11.
Talanta ; 239: 123120, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34864537

ABSTRACT

Pulmonary fibrosis (PF) is a common but fatal disease that threatens human health worldwide. Developing effective diagnostic methods is of great importance for the early detection of PF in patients. In this study, bleomycin (BLM) was used in mice to mimic idiopathic pulmonary fibrosis (IPF). The exhaled breath of BLM-induced PF, PF plus DDAH1 overexpression, and healthy control mice were analyzed in real-time using a newly developed associative ionization time-of-flight mass spectrometry method (AI-TOFMS), which is uniquely sensitive, especially to oxygenated volatile organic compounds (VOCs). Multivariate data analyses and discriminant modeling analyses revealed that four exhaled compounds, i.e., acrolein, ethanol, nitric oxide, and ammonia, had a strong correlation with PF symptoms. An Orthogonal Partial Least Square Discriminant Analysis (OPLS-DA) score plot showed an excellent separation between these three groups. The area under the receiver operating characteristic (ROC) curve for these four compounds distinguished PF mice from healthy controls at 0.989. In addition, the degrees of acute inflammation and fibrosis were assessed with Hematoxylin and Eosin (H&E) staining and Masson's Trichrome staining. Finally, combined with pathological characteristics and mRNA expression levels, the formation of the above-mentioned volatile compounds was explored. The obtained experimental results indicated that these four breath compounds, acrolein, ethanol, nitric oxide, and ammonia, were potential exhaled biomarkers for pulmonary fibrosis.


Subject(s)
Bleomycin , Idiopathic Pulmonary Fibrosis , Animals , Biomarkers , Breath Tests , Exhalation , Humans , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/diagnosis , Mass Spectrometry , Mice
12.
Talanta ; 235: 122788, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34517646

ABSTRACT

A thermal desorption associative ionization time-of-flight mass spectrometer was developed for ultrasensitive detection of semi-volatile chemical warfare agents (CWAs). The excited-state CH2Cl2-induced associative ionization method presented a soft ionization characterization and an excellent sensitivity towards CWAs. The detection sensitivities of the investigated nine CWA-related substances were 2.56 × 105-5.01 × 106 counts ng-1 in a detection cycle (30 s or 100 s). The corresponding 3σ limits of detection (LODs) were 0.08-3.90 pg. Compared with the best-documented LODs via the dielectric barrier discharge ionization (DBDI) and secondary electrospray ionization (SESI), the obtained LODs of the investigated compounds were improved by 2-76 times. Additionally, the measured sensitivity of 2-Chloroethyl ethyl, a proxy for mustard gas, is 550 counts pptv-1, which exceeds the DBDI and SESI's corresponding values (4.4 counts pptv-1 and 6.5 counts pptv-1) nearly by two orders of magnitude. A field application simulation was conducted by putting a strip of PTFE film contaminated with the CWA-related agent into the thermal desorption unit. The simulation showed that the sensitivities of the instrument via swipe surveying could achieve 2.19 × 105 to 5.23 × 106 counts ng-1. The experimental results demonstrate that the excited-state CH2Cl2-induced associative ionization is an ultrasensitive ionization method for CWAs and reveal a prospect for improving the detection of CWA species future.


Subject(s)
Chemical Warfare Agents , Mustard Gas , Chemical Warfare Agents/analysis , Limit of Detection , Mass Spectrometry , Mustard Gas/analysis , Spectrometry, Mass, Electrospray Ionization
13.
Oncol Lett ; 19(5): 3389-3399, 2020 May.
Article in English | MEDLINE | ID: mdl-32269611

ABSTRACT

The potential for non-invasive lung cancer (LC) diagnosis based on molecular, cellular and volatile biomarkers has been attracting increasing attention, with the development of advanced techniques and methodologies. It is standard practice to tailor the treatments of LC for certain specific genetic alterations, including the epidermal growth factor receptor, anaplastic lymphoma kinase and BRAF genes. Despite these advances, little is known about the internal mechanisms of different types of biomarkers and the involvement of their related biochemical pathways during the development of LC. The development of faster and more effective techniques is essential for the identification of different biomarkers. The present review summarizes some of the latest methods used for detecting molecular, cellular and volatile biomarkers in LC and their potential use in clinical diagnosis and targeted therapy.

14.
Anal Chem ; 91(9): 5605-5612, 2019 May 07.
Article in English | MEDLINE | ID: mdl-30841695

ABSTRACT

Excited-state CH2Cl2-induced associative ionization (AI) is a newly developed ionization method that is very effective for oxygenated organics. However, this method is not widely known. In this study, an unprecedented ionization efficiency and ultrafast reaction rate of AI toward nitro compounds were observed. The ionization efficiencies of o-nitrotoluene (o-NT), m-nitrotoluene (m-NT), and nitrobenzene (NB) were as high as (28 ± 3)%, (27 ± 2)%, and (13 ± 1)%, respectively (∼1-3 ions for every 10 molecules). The measured reaction rate coefficients of these nitroaromatics were (0.5-1.3) × 10-7 molecule-1 cm3 s-1 (∼300 K). These unusual rate coefficients indicated strong long-range interactions between the two neutral reactants, which was regarded as a key factor leading to the ultrahigh ionization efficiency. The detection sensitivities of the nitroaromatics, (1.01-2.16) × 104 counts pptv-1 in 10 s acquisition time, were obtained by an AI time-of-flight mass spectrometer (AI-TOFMS). These experimental results not only provide new insight into the AI reaction but also reveal an excellent ionization method that can improve the detection sensitivity of nitroaromatics to an unprecedented degree.

15.
Talanta ; 194: 888-894, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30609620

ABSTRACT

The chemi-ionization reaction is a high-efficiency pathway to produce molecular ions in plasma, however, it has rarely been applied in mass spectrometry to directly produce analyte ions. In this study, a novel chemi-ionization technique for mass spectrometry was applied for the direct and ultrasensitive detection of gaseous aldehydes. The ionization technique was enacted by a recently observed chemi-ionization reaction: the efficient proton transfer from H2O to oxygenated compounds was stimulated by vacuum ultraviolet (VUV)-excited CH2Cl2. By analyzing a series of aliphatic aldehydes (C2-C5) and benzaldehyde with different proton affinities (PAs) and polarities, the ionization features of the new ionization method were investigated for the first time. The chemi-ionization of aldehydes presented soft ionization characteristics with fragmentation patterns analogous to that of VUV photoionization. The method showed ultrahigh sensitivities toward aldehydes (up to 1108 ±â€¯6 counts pptv-1 for benzaldehyde in 10 s acquisition time). The corresponding 3σ limits of detection (LODs) achieved 0.30-0.69 pptv, which are equivalent of 1.35-1.92 ng m-3, for the compounds investigated. The humidity experiments revealed that the moisture in the sample gas had an evident impact on the detection efficiency of the analyte and the influence was PA dependent. In addition, the applicability of this ionization mode was further tested by analysis of aldehydes in cigarette smoke. This study provides a promising ionization method for greatly improving the current on-line detection sensitivity of volatile aldehydes.

16.
Environ Pollut ; 245: 20-28, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30408761

ABSTRACT

Despite extensive effort to characterize xylene-isomer-derived secondary organic aerosols (SOAs) over the past decade, differences in SOA composition among xylene isomers, and their relative contributions to SOA formation remain poorly understood. Herein, we reinvestigated the photooxidation of o-, m-, and p-xylene under two limiting NO conditions. Dicarbonyls, TBM (the acronym of C3-trione, 2,3-butanedione, and 3-methyl-2-oxiranecarbaldehyde with the same [M+H]+m/z value of 87), and highly oxidized species (HOS), based on the m/z 61 fragment, were determined to be the predominant SOA components arising from xylene photooxidation; however, their relative contributions to SOA formation appear to depend on the xylene substitution pattern. In the initial stages of the reaction, dicarbonyls present in the SOA from m- and p-xylene, and TBM in the SOA from o-xylene, were the main contributors to new particle formation (NPF). Based on their significant levels of formation, HOS and TBM were characterized to be critical components that enhance SOA growth. High NO levels were noted to inhibit the formation of C3-trione and 2,3-butanedione in the SOA from m- and o-xylene, whereas the formation of 3-methyl-2-oxiranecarbaldehyde during p-xylene photooxidation was significantly promoted. These results reveal that the substitution pattern of the xylene isomer is a significant factor that determines these differences. In addition, decreases in the levels of dicarbonyls and TBM during NPF and the formation of HOS in the presence of high levels of NO may be important factors that lead to lower SOA yields compared to those obtained under low-NO conditions. This work contributes to a better understanding of the formation mechanism of xylene-derived SOAs.


Subject(s)
Aerosols/chemistry , Photochemical Processes , Xylenes/chemistry , Air Pollutants/analysis , Oxidation-Reduction
17.
Anal Chim Acta ; 1035: 119-128, 2018 Dec 04.
Article in English | MEDLINE | ID: mdl-30224129

ABSTRACT

Taste and odor (T&O) compounds are widespread in water environments and have attracted considerable public attention. Nowadays, the standard detections of these chemicals rely mainly on off-line methods such as GC-MS or evaluation by trained analysts' senses. In this study, we report a method for the rapid detection of T&O compounds in water by exploiting a newly invented chemi-ionization source, in combination with headspace vapor measurement at room temperature. The calibrated limits of detection (LODs) of 2-methylbutyraldehyde, methyl tert-butyl ether (MTBE), methyl methacrylate (MMA), 2-isobutyl-3-methyoxypyrazine (IBMP), and 2-isopropyl-3-methoxypyrazine (IPMP) are in the range of 3.5-50.2 ng L-1, and the estimated LODs of 2-methylisoborneol (2-MIB) and geosmin (GSM) are 0.25 and 0.77 ng L-1, respectively. The calibration results reveal that the instrumental LODs for 2-methylbutyraldehyde, MTBE, MMA, ß-cyclocitral, 2-MIB, and GSM are 1-2 orders of magnitude better than the odor thresholds of humans. The accuracy, precision, recovery, and linearity (R2) of the method are tested. Water samples from city tap water and three rivers in Beijing are assessed using this technique, and the typical T&O compositions are observed with concentrations ranging from 0.2 to 297 ng L-1. The new ultra-sensitive rapid detection method shows comparable sensitivities to the existing off-line technique and displays great potential for real-time detection of T&O pollution in water environments.


Subject(s)
Mass Spectrometry/methods , Odorants/analysis , Water Pollutants, Chemical/analysis , Aldehydes/analysis , Camphanes/analysis , China , Diterpenes/analysis , Limit of Detection , Naphthols/analysis , Pyrazines/analysis , Reproducibility of Results , Rivers/chemistry , Taste
18.
Environ Pollut ; 234: 960-968, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29665636

ABSTRACT

Gasoline vehicles are a major source of anthropogenic secondary organic aerosols (SOAs). However, current models based on known precursors fail to explain the substantial SOAs from vehicle emissions due to the inadequate understanding of the formation mechanism. To provide more information on this issue, the formation of SOAs from ozonolysis of four light-duty gasoline vehicle exhaust systems was investigated with a vacuum ultraviolet photoionization mass spectrometer (VUV-PIMS). Remarkable SOAs formation was observed and the SOAs were primarily aliphatic alkenes. PI mass spectra of the SOAs from all vehicles exhibited similar spectral patterns (a regular mass group with m/z at 98, 112, 126 …). Interestingly, most carbonyl products of aliphatic alkenes observed as major gaseous products have specific molecular weights, and the main formation pathway of SOAs can be explained well using aldol condensation reactions of these carbonyls. This is a direct observation of the aldol condensation as a dominated pathway for SOAs formation, and the first report on the composition and formation mechanism of the SOAs from the ozonolysis of gasoline vehicle exhaust is given. The study reveals that low molecular weight alkenes may play a more significant role in vehicle-induced SOAs formation than previously believed. More importantly, the PI mass spectra of SOAs from vehicles show similarities to the field aerosol sample mass spectra, suggesting the possible significance of the aldol condensation reactions in ambient aerosol formation. Since carbonyls are a major degradation product of biogenic and anthropogenic VOCs through atmospheric oxidation processes, the mechanism proposed in this study can be applied more generally to explain aerosol formation from the oxidation of atmospheric hydrocarbons.


Subject(s)
Aerosols/chemistry , Air Pollutants/chemistry , Gasoline/analysis , Models, Chemical , Vehicle Emissions/analysis , Aerosols/analysis , Air Pollutants/analysis , Hydrocarbons , Molecular Weight , Oxidation-Reduction , Ozone
19.
Environ Pollut ; 232: 65-72, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28917820

ABSTRACT

To further explore the composition and distribution of secondary organic aerosol (SOA) components from the photo-oxidation of light aromatic precursors (toluene, m-xylene, and 1,3,5-trimethylbenzene (1,3,5-TMB)) and idling gasoline exhaust, a vacuum ultraviolet photoionization mass spectrometer (VUV-PIMS) was employed. Peaks of the molecular ions of the SOA components with minimum molecular fragmentation were clearly observed from the mass spectra of SOA, through the application of soft ionization methods in VUV-PIMS. The experiments comparing the exhaust-SOA and light aromatic mixture-SOA showed that the observed distributions of almost all the predominant cluster ions in the exhaust-SOA were similar to that of the mixture-SOA. Based on the characterization experiments of SOA formed from individual light aromatic precursors, the SOA components with molecular weights of 98 and 110 amu observed in the exhaust-SOA resulted from the photo-oxidation of toluene and m-xylene; the components with a molecular weight of 124 amu were derived mainly from m-xylene; and the components with molecular weights of 100, 112, 128, 138, and 156 amu were mainly derived from 1,3,5-TMB. These results suggest that C7-C9 light aromatic hydrocarbons are significant SOA precursors and that major SOA components originate from gasoline exhaust. Additionally, some new light aromatic hydrocarbon-SOA components were observed for the first time using VUV-PIMS. The corresponding reaction mechanisms were also proposed in this study to enrich the knowledge base of the formation mechanisms of light aromatic hydrocarbon-SOA compounds.


Subject(s)
Aerosols/analysis , Gasoline/analysis , Photochemical Processes , Vehicle Emissions/analysis , Hydrocarbons, Aromatic , Mass Spectrometry , Molecular Weight , Oxidation-Reduction , Toluene , Xylenes/analysis
20.
Anal Chem ; 90(2): 1301-1308, 2018 01 16.
Article in English | MEDLINE | ID: mdl-29227091

ABSTRACT

The mass spectrometry analysis of oxygenated volatile organic compounds (OVOCs) remains challenging due to their limited ionization efficiencies. In this study, we surprisingly found that, under vacuum-UV (VUV) excitation, a gaseous mixture of CH2Cl2/H2O/analyte (OVOCs) in N2 buffer generated large amounts of H3O+ and protonated analyte even when the photon energy was lower than the ionization energy of the neutral species involved. In contrast to those obtained with VUV photoionization alone, the signal intensities of oxygenated organics can be amplified by more than 3 orders of magnitude. The isotope tracing experiment revealed that the proton donor is water, and the dependence of the signal intensities on the VUV photon intensities verified that the reaction was a single-photon process. The observed ionization process is assigned as an undocumented chemi-ionization reaction in which a complex formed from the ion-pair state CH2Cl2*, H2O, and analyte and then autoionized to produce the protonated analyte with the aid of the reorganization energy released from the formation of CH2O and HCl. Essentially, here we present an efficient chemi-ionization method for the direct protonation of oxygenated organics. By the method, the mass spectrometric sensitivities toward acetic acid, ethanol, aldehyde, diethyl ether, and acetone were determined to be 224 ± 17, 245 ± 5, 477 ± 14, 679 ± 11, and 684 ± 6 counts pptv-1, respectively, in 10 s acquisition time. In addition, the present ionization process provides a new method for the generation of a high-intensity H3O+ source (∼1011 ions s-1, measured by ion current) by which general organics can be indirectly protonated via a conventional proton-transfer reaction. These results open new aspects of chemi-ionization reactions and offer new technological applications that have the potential to greatly improve mass spectrometry sensitivity for detecting trace gaseous organics.

SELECTION OF CITATIONS
SEARCH DETAIL
...